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ABSTRACT 

Nuclear power series spaces of finite type, Ao(~ ), and infinite type, Ao~(~), 
are considered. Sufficient conditions are given on c~ for which there exists a fl 
such that Ao~(fl) is isomorphic to a subspace of Ao(c 0 and also for which 
there does not exist such a ft. In certain cases it is possible to take fl = ~. 
The results m this papar are related to earlier results by S. Rolewicz and 
V. P. Zaharyuta. 

One way of investigating the structure of  nuclear Fr6chet spaces would be to 

characterize, for a given space, all infinite dimensional closed subspaces, up to 

isomorphism. For  example, in the case of  the space m of all infinite sequences of  

scalars, the answer is simply m itself [-9, (3.1)]. In this paper we consider a very 

limited version of this extremely general question. We take a given power series 

space of finite type (see below for definitions) and try to determine if it is possible 

for this space to have a subspace isomorphic to a power series space of infinite 

type. A more difficult next step will be to try to find out exactly which such spaces 

can appear  as subspaces. 

The first result in this direction was due to S. Rolewicz in 1961 who showed 

[12] that such an embedding can be possible. Some of our results are extensions 

of  this observation, but inasmuch as Rolewicz used a representation in terms of 

spaces of  analytic functions and we use only sequence space representations, our 

methods are quite different. 

More recently, V. P. Zaharyuta  has shown [13] that no power series space of  

infinite type can contain a subspace isomorphic to a power series space of finite 

type. Indeed, our main motivation in this paper has been to consider the statement 

of  Zaharyuta ' s  theorem with the words "infinite" and "f ini te"  interchanged. In 
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view of Rolewicz's result it is not surprising that this transposition puts us into 

an entirely new situation. We show, for example, that Zaharyuta's method, 

consideration of compact maps, is entirely inapplicable (Theorem 5) and the fact 

that the answer to our question is sometimes yes and sometimes no suggests that 

the structure of  finite type power series spaces is more complicated than that qf 

infinite type spaces. 

Usually, the most useful tool in studying nuclear Fr6chet spaces is the fact 

that the seminorms defining the topology can be taken to be seminorms which 

come from inner products and hence the theory of Hilbert spaces cart be applied 

(see [10], for example). In this paper, we exploit the fact that the role played by 

12 can also be played by loo. Considering only elements which can be written as 

finite linear combinations of  elements of a basis gives a combinatorial flavor to 

the problem of  estimating the seminorm of an element of  our space. 

The major technical result in this paper is Theorem 1 which gives several 

characterizations of  when a certain subspace of a given finite type power series 

space is isomorphic to a space of  infinite type. Theorems 3 and 4 give new classes 

of  finite type power series spaces which have infinite type subspaces and Theorem 2 

provides a limitation on the kind of  embedding which is possible. Among the 

consequences of  these results are two interesting new facts. First we show that 

quasi-equivalent bases (see [10] for definitions) are not the same if one considers 

all possible subspaces which can be generated by block basic sequences. Secondly, 

we give the first example of a block basic sequence which generates a noncomple- 

mented subspace and has no extension to a basis (cf. [5] and [8]). In Theorem 6 

we show that there are some power series spaces of finite type which have no 

subspace isomorphic to a power series space of  infinite type. 

The term scalars will refer to real or complex numbers; subspace will mean 

closed subspace and isomorphic will mean linearly isomorphic. 

The symbol N will stand for the positive integers and we will variously denote 

a sequence by ~, (~n), (~n)n" Sometimes we will refer to an infinite subset No c N 

and then use N o to index a sequence. We mean, in this case, that No is to be con- 

sidered in its natural order as a subsequence of N. 

The n ' th coordinate sequence en is the sequence which is 1 in its n ' th coordinate 

and 0 elsewhere. 

We recall that a sequence (x,) in a locally convex space E is a basis if  for each 

x ~ E there is a unique sequence (t,) of  scalars such that 
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X = ~ tnX n. 
n 

A sequence in E is a basic sequence if  it is a basis for the subspace which it 

generates. I f  E is a locally convex space and (x~) is a basis then a block basic 

sequence of (xn) is a sequence (yn) determined by a strictly increasing sequence, 

0 = P0 < Pl < "'" of  integers and a sequence (t~) of  scalars via the relation 

Pn 

yn = ~, t,x i ~ O, n = 1,2,. . . .  
i = p ~ - l + l  

I f  E is a Fr6chet space then a block basic sequence is always a basic sequence. 

The preparation of this paper  was partially supported by NSF Grant  GP33327 

and also by Deutsche Forschungsgemeinschaft SFB 72. We would like to thank 

C. Fenske and A. Wiegner for many useful conversations about the results in 

this paper. 

Preliminary results 

We begin by recalling some of the basic facts about power series spaces. For  

more details see [11]. We define an exponent sequence to be a nondecreasing 

sequence ~ = (~n) of  nonnegative numbers. Given ~ we define the corresponding 

power series spaces Ao(~), A~(~) of finite and infinite type respectively by 

Ao( ) = = p k ( 0  = Ir + 1 /  < o% k = 1 , 2 , . . .  

In each case the functions Pk, k = 1,2, . . .  form a fundamental system of  seminorms 

for Fr~chet space topologies on Ao(c0, A~(e). 

An exponent sequence e is said to be a nuclear exponent sequence of finite 

type i f  

Y~ k -~" < oo for all k = 1,2, ... 
n 

and a nuclear exponent sequence of infinite type if  

I~ k - ~ " <  oo for some k =  1,2,- . - .  
n 

The basic properties of  power series spaces which we will need are contained in 

the following proposition. They are well known and easy to derive f rom the 

definitions. 
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PROPOSITION 1. Let o~ be an exponent sequence. 

(i) c~ is a nuclear exponent sequence of finite, respectively infinite, type iff 

the Fr6chet space Ao(a), respectively A~(a), is a nuclear space. In this case the 

fundamental system of seminorms (Pk) can be replaced by (~,) where 

P, , (~)=  s u p l ~ . l  y - ~  , 
n 

respectively 

p,(~) = sup 14n I k~"" 
n 

Moreover, in this case, the coordinate sequence (e,) forms a basis for the space, 

called the coordinate basis. 

(ii) I f  ~ is a nuclear exponent sequence, then lim, % = oo. 

(iii) I f  ~ ,  1/~, < oo then ~ is a nuclear exponent sequence of both finite and 

infinite type. 

(iv) Every nuclear exponent sequence of finite type is also a nuclear exponent 

sequence of infinite type but not conversely. A counter-example is given by 

~, = log n. 

(v) I f  ~ and fl are two nuclear exponent sequences of the same type and 7 is 

the sequence obtained by rearranging the sequence (e l , f l t ,~2 , f l2 , ' " )  into a 

nondecreasing sequence, then 7 is a nuclear exponent sequence of the same type. 

(vi) I f  ~ is a nuclear exponent sequence and c > 0 then the sequence (Can) n is a 

nuclear exponent sequence of the same type. 

(vii) Any subsequence of a nuclear exponent sequence is a nuclear exponent 

sequence of the same type. 

Now let (akn) be a fixed infinite matrix of  scalars satisfying the following 

conditions for all n, k: 

k ~ k + l  
(1) 0 < an = an 

k k + l  
an > an 

(2) a-r-- = "+I" 
n + l  an+ 

For  a sequence of  scalars tpo+ 1 , " ' ,  tm (Po < Pl) and for each k = 1,2,-. .  we define 

qk(tpo+X ,. . . , t in) = m a x / q :  max ] t,]ak = ] t~lakq I" 
po<i~Pl ! 

LEMMA 1. In the context of the above notation we have 
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qk(tr ) ~ qk~ i(tp~+l,...,t,,). 

If  we have Po < i < j  < Pl with PROOF. 

then 

so that 

k + l  k I t j J  ,3, < a~ "< _ _ _  

,~+1 = Ok : I I ,  I ,3j 

]t,]a~ +1~1' ' + ~  I t ] ,3 j  . 

This implies that if qk(t,~+ t ," ' ,  tp~) = j then qk + ~ (tpo+ ~,..., tp,) > j and the lemma 

is proved. 

Suppose we think of t,~+ ~, . . . ,  tp, as fixed for the moment and k as running 

through consecutive integers l, 2, ..., K. Then the numbers qk =q~ (tRy+ ~, .-., tp,) run 

through the integers Po + l , . - . ,p~ with perhaps some omissions and/or  some 

repetitions. Lemma 1 states that the sequence q~, . . . ,qr  must be nondecreasing. 

In Lemma 2 we show that, with an additional condition on the original matrix 

(ak,,), these are the only restrictions and that, otherwise, any preassigned sequence 

qJ,...,q~ can be attained by an appropriate choice of tpo+t,...,to,. This result 

will be crucial in all of  our constructions of subspaces. 

LEMMA 2. Assume that the inequality (2) is strict for all n,k. Let po,...,pm 

be any sequence of integers such that 

0 < p O < p t  

and let ql, ...,q,, be any integers 

P o < q  

< ... < p .... 111< pl - po, 

which satisfy 

l < q 2 < . . . < q " ~ p l .  

Then there exist scalars tp~+~,...,tp, such that 

qk(tpo+ l,... ,tp, ) = ql for P1-1 < k ~ Pl, l = 1,2,- . . ,m. 

PROOF. Set t i = 0 for i ~ q~, ...,qm and set tq, = 1. Then we choose tqj, j = 

2, . . . ,m inductively to satisfy the inequality 

k k 

(3) max I ta,-,I a7 ' <]t,t ,I  < rain It,,_, laq,-,  k " 
P J -  I < k ~ O j  O 1 - 2 < k ~ _ p J -  ! ~]qJ 

This choice is possible because our hypotheses that the inequality in (2) is strict 
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and that q i -  ~ < qJ imply that every term on the far left of  inequality (3) is strictly 

less than every term on the far right. 

Now fix l = 1,... ,  m - 1 and first consider some j with l < j < m. By (3) we 

have 

]tvla~<lt.,_,la ~,_ , for pj_z<k<pj_,.= 

We claim that this inequality also holds for pt_a < k < p,. Indeed, using it with 
k = pj_~ and the fact that p, < pj_~ we obtain for p,_~ < k < p,, 

,,, Pa'-  1 Pl k Its, I < "J_L'. < a~j-~ < aq~-, 

ItW, l=,:,_, , ,  
~qj Gqj aqs 

Thus we have proved 

* a~j-~ for < j <  and k <  

Repeating this inequality with j replaced successively by j - 1,. . . ,  I + 1 we obtain 

ltq~lakj<]tq, la k, for l < j < = m  and Pl-1<k<=Pt.  

From the definitions we immediately conclude that 

qk(tpo+l, ...,tp,) < ql for Pl-1 < k ___< p~. 

For  1 = m this inequality follows immediately from the fact that i ti] => 0 for all i 

and I til "# 0 iff i = q 1,..., qm. 

TO obtain the reverse inequality we argue analogously. Suppose that l > 1 and 

we have 1 < j < I. Applying (3) we obtain 

lt~,la~,<lt~,+,la~,+l for p j < k < p j + l .  

Again we wish to extend this inequality to the case Pz-~ < k < Pz- Using it with 

k = pj + 1 and the fact that pj <= Pl-1 we obtain for Pt-1 < k _< pt, 

l 1 P t - l + l  k I t~j+l > aq~ J+ > aq~ > aq~ 

r~oJ+l ~ p t - ~ + l  k 
~qj+ 1 t~qj+ 1 aqj+ 1 

Thus we have proved 

k I ' ,~ la, '< l ' , " ' l++'  for 1 =<j < l  and Pl-1 < k  = p,. 

Repeating this inequality with j replaced successively by j + 1, ..., l - 1 ,  we 

obtain 

k k [tq~laqj<ltq, iaq, for l < j < l  and p l _ t < k < p t .  
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This shows that 

qk(tpo+l, "",tp, ~ qt for Pl-1 < k < p,. 

Finally, for l -- 1, this inequality follows as the first one did for l = m.  Thus 

we have our two inequalities and the proof  is completed. 

For  the remainder of  the paper we specialize the matrix in the above discussion 

to be 

k = { k ~ ' "  
a, I,k + 1] ' n ,k  = 1,2 , . . . ,  

where a is a nuclear exponent sequence of finite type. It  is easy to check that the 

inequalities (1) and (2) hold, so Lemma 1 is valid. Moreover, the inequality (2) 

is strict so that Lemma 2 holds iff a is strictly increasing. 

Now we want to introduce some auxiliary quantities based on the following 

parameters which may vary throughout the paper but will be fixed in any given 

discussion: 

- - a  nuclear exponent sequence of finite type 

f l -  a nuclear exponent sequence of infinite type 

(y.) - -  a basic sequence in Ao(~ ) which is of  the form 

pn  

y, ]~ " < o o  n = l , 2 , . . .  = ti ei, P n  , 
i = 1  

(d,) - -  a sequence of nonzero scalars 

rc - -  a permutation of  ~.  

Then we define, for n, k = 1,2, . . . ,  

qk = qk(t"l,"', t~.) 

fix(n) 

�9 k " ~  

k pk+ 1 
r n  - -  k 

Y = subspace of  Ao(cO generated by (y.). 
k First we derive a useful estimate of  the quantity r~. 
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In the context of the proceeding notation, we have, for all n, k, 

k2 + 2k... ] = r . =  . 

PROOF, From the definition of q k we have 

�9 k ~t +/n 

It+~+'l ~ =<lt:"+l k~4-~] 

and 

SO 

and 

(+ + q++++ /+ + ,?+"++' 
+ t~+~ It+. +] t,k--~] <l +. I r k + e ]  

dll/•,•(•)! +n t i l l  ( . )  
,, I ,,+..,+, k + 1~ '++-'+++' 

d './ ao<"+ I t"+"+ I ' / p+(") 

k k + ~  

<= \k + 1} 

-C~] -< < ~ = \~-~j 

which is exactly the desired inequality and the lemma is proved. 

For the remainder of the paper we will be concerned with the problem of 

deciding when, for a given a, there exists (y.) and a fl such that Y is isomorphic 

to A| As we will see, this amounts to being able to choose (d,) and zc so that 

the quantities defined above satisfy certain analytic conditions. The major 

technical tools which we will use to obtain such results are contained in the 

following characterization. 

THEOREM 1. In the context of the preceding notation, the following are 

equivalent. 

(i) Y is isomorphic to Aoo(fl). 

(ii) There exist (d,) and rc such that 

(a) V j 3 k  a n d M > O ~  

. [ k ?+"+ 
ja~(.) < Md.i t+~] \-k-+-i] for all n 

and 

(b) V k ~ l  a n d N > 0 9  
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Gt k 

d111t.~l [ k--L-'~ q~ Nl a~.~ for all n. 
\ k  + 1] = 

(iii) There exist (d.) and ~ such that 

(a) lira pk11 < ~ for each k 
11 

and 

(b) sup lim #k=oo .  
k 11 

(iv) There exists r~ such that 

(a) sup k ~,11 < oo for all k 
11 

and 

265 

of Y and A~(fl) is equivalent to the existence of (d11) and rc such that the bases 

(y11) and (d11%,))are equivalent, where (e11) is the coordinate basis for A~(fl). This 

is the same as saying that the sequence spaces determined by these bases are the 

same. Thus by a standard argument using the absolute basis theorem of Dynin 

and Mitiagin [6] and Proposition l(i), the isomorphism is equivalent to the 

relation 

where, for each k, b k = (b k) and ck= (C k) are the sequences given by 

b"k = I t~,, I ~,k + 11 ' 

k 1 k ~ . ( . )  

Here the notation, (I/x)- l~, refers to the set obtained by multiplying each sequence 

in 11 coordinatewise by the sequence (1/x,). 

Now the two sequence spaces mentioned above are echelon spaces in the sense 

of KSthe [7, w so they are equal iff their corresponding co-echelon spaces are 

also equal. Therefore, the relation 

k 

(b) sup lim ]~ - ] ~ = o o .  
k n j = l  

PROOF. 

(i) ,*~ (ii). According to the famous theorem of Dragilev [3], the isomorphism 
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U ck'loo = U bk'loo 
k k 

is equivalent to (i). But this equality is clearly equivalent to: 

(a) V j 3 k  andM>O~c~<=Mb k Vn 

and 

Israel J. Math., 

(b) Vk31  a n d N > O g b k < N c ~  Vn. 

Substituting for b k and c k transforms the above two statements exactly into (ii). 

(ii)r If  we raise both sides of the inequalities (ii) to the power 1/fl,~(,.), 

then they become 

(a) V j ~ k  and M > 0 ~ j  < M 1/B,(,) #k for all n 

and 
(b) Vk3 l and N > O~ pk< N~/a,~(,,)l for all n. 

We then take the limit inferior in (a), the limit superior in (b), and apply Propo- 

sition l(ii) to obtain 

(a) V j 3 k g j <  lim #k, 
N 

and 
(b) V k 3 1 9  lim pk.<l.  

n 

Clearly (a) is equivalent to (iii) (b) and (b) is equivalent to (iii) (a). 

(iii) :*- (iv). Choose some (d,) and rc such that (iii) (a) and (b) hold. First we 

prove (iv) (a). I f  this were not true then we would have some ko and an infinite 

subset No c ~ such that limn~No?k, ~ = oO. Applying Lemma 1 for each n it would 

tbllow that lim.~No? k = oO for all k > ko. By Lemma 3 this implies that 

lim,~No ~ ~ for all k >  ko. By (iii) (a), " k+l = llm, p, <oo  for k > k o  and so 

lim.~Nopk= 0 for k > kko and hence lim, p k = 0 for k > ko. Obviously, in view 

of (iii) (a) applied with k = 1,...,  ko - 1 we have a contradiction of (iii) (b). 

Next we prove (iv) (b). Applying Lemma 3 we have, for each n, k 

k-1 2 + 2j + 1~ ~+' 
= r .  ~ / 

so that for all k, 

lim pk. <_ P2 lim k ~/~ ~-2] " 
n T \ j = l  
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Hence if, in view of (iii) (a) we set M = lim. p.~ < 0% it follows from the mono- 

tonicity of the logarithm function that 

1)) 
log (lira #k) < log M + lim + 

Now it is easy to check, using elementary calculus, that 

[j2 + 2j + 1~=1 
lim (j + 1) 2 log \ ~- ~-2j 

j ~ o o  / 

and so we have by (iii) (b), 

oo = sup log (lim #k) 
k n 

( "~ --2, [j2 +2j + 1 
<= logM + suplimk --a-\S=l(J+l)2(j+l)mg~()-2+2-f  

< l o g M +  sup ( ( j + 1 ) 2 1 o g ( : / 2 + 2 j  + 1 ) )  
k - 1  bj ~ 1 

suplim ~] Y" 
l < j < o o  JZ+2J k ~ j = l  ( j~ - j~2 '  

and since both log M and the quantity 

sup (j + --2.o j2 .q_ 2j + 1 
l__<j<oo 1) J g j 2 + 2 j  

are finite, it follows that 

sup lim 7s+1 
k . j = l  ( J u  r 1 7 6 1 7 6  

which, along with (iv) (a) applied with k = 1, establishes (iv) (b). 

(iv) ~ (iii). Choose zc such that (iv) (a) and (b) hold. Since y. ~ 0 it follows 

from the definition of qk that t~k r 0 for each k, n. Hence we can choose d, > 0 

such that p l = 1 for all n. By (iv) (a) we can set M k = supj=< k sup.y, j < oo and apply 

Lemma 3 to obtain, for each n, k, 

k-1 (jz + 2j + 1.~ y~+I 
1 k-l  ~j~= 

= = = 1  F + Z j  / 

j 2 + 2 j  + 1. 

\ j  = 1 

which establishes (iii) (a). 

Fo obtain (iii) (b') we apply Lemma 3 again to obtain, for each n, k, 
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= # . r n . . . r .  = 
j = l  

Hence there exists 6 > 0 such that for each n, k, 

1ogpkn+ 1 ~ n ~21og ] + 2j + 
j = l  J---2-J j2 q- 2j 

---- ~ I-I j2 
j = t  

SO 

k j 
sup lira 1og#kn +x__>fsup lim ~ )'" = o o  

k n k n j = 1 7  

which establishes (iii) (b). This completes the proof  of the theorem. 

Condition (iv) in the preceding theorem is interesting because it shows explicitly 

the relative unimportance of the sequence (d,). This condition may also be useful 

in deciding that specific values of  fi do, or do not, lead to infinite type power 

series spaces that can be embedded in Ao(a ). 

The following consequence of  Theorem 1 lists some necessary conditions for 

the isomorphism of Y and Aoo(fl). They will be useful later on. 

PROPOSITION 2. I f  Y is isomorphic to A~(fl) and 7r is chosen so that condition 

(iv) of Theorem 1 holds, then there exists ko such that we have, for  k >: ko, 

lim 7 k > 0  

and 

lim k q, = O0. 
n 

PROOF. Suppose the first statement were false so that we had an infinite set K 

such that lim, y k = 0 for all k ~ K. Then by Lemma 1 and the definition of  

~k it would follow that lira, 7 k = 0 for all k. 

Now fix k so that we have an infinite subset No c r~ such that lim,~so k 7, --- 0. 

By Lemma 1 again it follows that lim.~so7 j = 0 for j < k. Hence we have 

k y 
lim Y~ ~" = 0 .  -h--- j=  1 ~ -  

Since this holds for each k we have a contradiction of Theorem 1 (iv). 

The second statement follows from the first. In view of Lemma 1, it suffices 
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to prove this statement for k = k0. If  it were false then we would have an infinite 

subset No c N such that sup,Euo qko < O0. But then, since lira, fl~(,) = ~ (Proposi- 

tion l(ii)), it follows that 
(Xqko 

lim 7k,~ lim " = 0  
neNo neNo fl~z(n) 

and this contradicts the first statement. Hence the second statement is also proved. 

Main results 

The first result on embedding infinite type power s: s spaces as subspaces of 

finite type power series spaces was due to S. Rolewicz / 2] who showed how to 

embed Ao~(a) as a subspace of  A0(~ ) when % = n. Actually, he proved that the 

space of entire functions (in one complex variable) is isomorphic to a subspace of 

the space of functions analytic in the interior of a disk. This is the same thing 

since, as is well known, these two spaces are isomorphic to Ao~(~), Ao(~) respect- 

ively when ~, = n. 

Rolewicz's result makes use of complex function theory and as such the actual 

construction is not obvious. Although B.S. Mitiagin has pointed out a much 

simpler argument, it is still not clear what the subspace looks like from a sequence 

space point of  view. Our first main result shows that there is a limitation on how 

simple the embedding can be. It follows from our theorem and Rolewicz's result 

that not every subspace of  a finite type power series space can be isomorphic to a 

subspace generated by a block basic sequence of  the coordinate basis (e,). 

I f  ~ is a nuclear exponent sequence of finite type which satisfies THEOREM 2. 

the condition 

sup ~,+i < ~ ,  
n ~n 

then A~o(c0 is not isomorphic to the subspace of Ao(~ ) generated by any block 

basic sequence of (e,). 

PROOF. By Proposition 1(iv), ~ is also of infinite type so the discussion of the 

preceding section is applicable. I f  we assume that (y,) is a block basic sequence of 

(e,) then we may assume that there exists a sequence 0 = Po < Pl < "'" and 

Pn 
y,  = ~ tie i, n = 1,2, . . . .  

i=Pn- l+l  

This implies that for all n, k , j  we have 

J 
P , - l < q k = < P , < q , + I  
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SO 

%n-, < aq~ < %. < aq J 
n 4 - 1  

Next we observe that since 7~ is a permutation, there exists an infinite subset 

No c N such that rc(n + 1) < re(n) + 1 for all n ~ ~/o. Indeed if not, then there 

would be an integer no such that rc(n + 1) > re(n) + 1 for all n > no. Then we 

would have, for each n~ > no, that re(n)# n ( n l ) +  1 for n > n o. That is, the 

infinitely many integers re(no)+ 1, re(no + 1 )+  1,... would not be in the set 

{z~(n): n > no) and this would contradict the fact that ~ is onto. 

Hence we may compute, 

aq~ 
sup sup ?k = sup sup ~ <  sup sup ap~ 

k n~t'r k neNo an(n) k neNo an(n) 

aqn~ + t an(n+ 1 ) 
< sup sup 

k nENO an(n+ 2) an(n) 

( 1 ) an(n)+ 1 
< sup 7n+1 sup 

\ n ~ N  n~No an(n) 

< (sup 71)sup an+l 
\ h e N  n~N an 

Now if we assume that condition (iv) of  Theorem 1 holds then it follows from 

(iv) (a) and our hypotheses that this last expression is finite and so we have 

( :)( sup lim =~ < sup? sup < oo 
k n j =  ~ = n~N n e N  j = l  

which contradicts (iv) (b) and the theorem is proved. 

REMARK 1. In Theorem 2 it is not necessary to assume that a = fi or that 

(an+ ~/gn) is bounded. It is enough to assume that there exists an infinite subset 

~o ~ N such that 

fin(n+ 1) sup - -  < ~3. 
n~No finfn) 

Then we could compute 

sup 
k 

aq~ 
sup ?~ = sup sup 
n~No k nENo fin(n) 

_< { s u p ? : ~  sup fl,(,+l) 
--  \ I n  n~No fin(n) 

and the remainder of the argument is the same. This gives a necessary condition 
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on fl and ~z jointly for an embedding of A~(fl) as a subspace of Ao(~ ) generated by 

a block basic sequence of (e,). 

In the next result we show that it can happen that A~(ct) is isomorphic to a 

subspace of Ao(~ ) generated by a block basic sequence of a basis other than (e,), 

in particular a permutation of this basis. Thus we have our first extension of 

Rolewicz's result to more general power series spaces. 

I f  a is a nuclear exponent sequence of finite type which satisfies THEOREM 3. 

the condition 

a2n sup < ~ ,  
n 0On 

then A| is isomorphic to a subspace of Ao(a), in particular one which is 

generated by a block basic sequence of a permutation of the basis (e,). 

PROOF. First of  all we show that we can assume that a is strictly increasing. 

Indeed, if (6,) is any sequence of  positive numbers with 1 =< 6n _-- 2, chosen such 

that 8n = an + 6, is strictly increasing, then ~, is again a nuclear exponent sequence 

of finite type and Ao(8) is isomorphic to Ao(a) via the identity map. Moreover, 

sup 82n = sup a2" + 62. 
. O~n n O~n "]- ~n 

=< sup a2.. + 2 s u p  - - < o o l  
n {Xn n {~. 

so all of  our hypotheses still hold. Thus we may apply Lemma 2 to (a.). 

Let a: N • N --+ N be the bijection given by 

o'(j, n) = 2 j - l ( 2 n  - -  1) 

and set M = sup, a2,/%. Let n be fixed and for k = 1,2, . . . ,  n let jk be the first 

positive integer such that 
0~ k k3 < a(j,,n) 

an 

This is possible since a and a(. ,  n) are increasing. There are two ways in which 
.k j ,  could have been selected. First, suppose jk = 1. Then we have 

O~ k 
~(j.,.) _ a2.-1 <= a2_ nn < M < M k  3. 

a n an a n 

Otherwise, if ft, > 1 we have 
a k 

a ( j n - l , n )  ~ k 3 

an 
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so that  

k Ct k Ct k 
a ( j n , n ~  = a(jn,n_____~) o ( j n - 1 , n )  ~ M k 3 .  

~ ~xa(jk n - 1 ,n) Or. 

Thus in either case we have 

k 3 <  ~ k = 1 ,2 , . . . ,n .  
~n 

NOW we set Po = 0 and p, = a(j~,n). Obviously (jk) and hence a(jk~,n) are non-  

decreasing with respect to k so we can apply Lemma 2 to assert the existence o f  
n scalars t i, i = l , . - . , p ,  such that if 

Pn 
y,, ~ " I i e l ,  

i = 1  

then 

q ] =  k a( j , ,n) ,  k = 1, . . . ,  n. 

Moreover ,  f rom the p roof  o f  Lemma 2, t~ = 0 if i is not  one o f  a(i~, n), k = 1,. . . ,  n, 

and so we can write 

= ~ I n i e f 
Y n  ~rtj . .n) a(jn,n)" 

i---1 

This shows that the sequence (y.) is a block basic sequence o f  a permutat ion o f  

the basis (e.). 

We complete the p roof  by applying Theorem 1 (iv). We have fl = ct and we take 

to be the identity map so we obtain 

k3 < ])k, < M k  3 for k = l , . . . , n .  

Hence, for  each k, 

sup k Y, = max 
n 

max ?~,Mk 3} < ov 
l ~ n < k  

and 

=•1 = sup lim sup lim -jE- k j = j= 
n n J = n_~k 

k j3 
__. sup ]~ = oo. 
- -  k j = l  U 

Thus our  theorem follows from Theorem 1. 

REMARK 2. In view of  Dragimv's  theorem and the fact that  multiplying a 
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basis by a fixed sequence of nonzero scalars does not affect the nature of  a block 

basic sequence, we can say that Theorems 2 and 3 consider all possible bases for 

the space Ao(~ ). Moreover, these two results imply that the fact that two bases 

are quasiequivalent does not imply that their block basic sequences generate 

isomorphic subspaces. 

REMARK 3. It may seem that it is possible to improve Theorem 3 by replacing 

the permutation a by some other permutation. However, an analysis of  the proof 

shows that the crucial property of  a is the fact that for each j,  

sup %(j.n) < oo. 
n ~n 

It was shown in [-4] that the existence of any permutation with this property is 

equivalent to the fact that a has this property and this is also equivalent to the 

hypothesis on c~ in Theorem 3. Thus it seems that this is the best result for the 

case e = fl that can be obtained by this method. 

However, if we drop the requirement that e = fl then we can weaken the 

hypothesis on c~ and therefore get the following further extension of Rolewicz's 

theorem. In this case we once again get block basic sequences of (e,). 

THEOREM 4. Let c~ be a nuclear exponent sequence of finite type. Assume that 

there exists a constant M and a sequence I n = [~,,2n] of nonempty closed in- 

tervals of positive integers such that 

and 

em+x <=MformEin  ' n = 1,2,. . .  
am 

s up  .~'~" = OO. 

Then there exists a nuclear exponent sequence of finite type fl such that Aoo(fl) 

is isomorphic to a subspace of Ao(~) oenerated by a block basic sequence of(e.). 

PROOF. Our argument will be a variation of  the proof  of Theorem 3. As in 

that case we can use a simple perturbation argument to assume that ~ is strictly 

increasing. Moreover, by disregarding some of the intervals I ,  and changing some 

others if necessary, we can easily arrange for the following properties to hold, 

where f (n)  = c~../%.: 
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[ <~J . ,  2n<~)n+l  

1 <-f(n) < f ( n  + 1) 

for n = 1,2,. . .  and 

f (n--L) = oo. 
~2 

n=l 

Now fix n and for k = 1,2, . . . ,  n let qk be the smallest positive integer such that 

f(k)ot~,. < ~q~ . 

Since ~b. > 1, f ( k )~e .  > ~r and e is increasing, it follows that 

and so we have 

qnk> ~b.> 1 for k = l , . . . , n  

%~_~ < f ( k ) % .  

Moreover, s incef(k) < f ( k  + 1) we have 

qk< qk+X for k =  1 , 2 , - . - , n -  1. 

Next we have, for k = 1,2,. .- ,  n, 

~ ,  = f (n)ao, >->_ f (k)~r 

so that 

q~=<2, for k =  1,2, . . . ,n .  

Finally we have for k = 1,2, . . . ,  n, 

~tq ~ = - -  %~ _ 1 < M f ( k ) a ~ .  
~q~- X 

Now let p o - - 0  and p , = q ~  for n - 1 , 2 , . . - .  Then we have, for k = l , 2 , . . . , n ,  

, -  t < 2 ._  ~ < ~ .  < q~ -< p . ,  Pn-1 = qn-1 = 

so we can apply Lemma 2 with Po, Px replaced by p._ ~, p. to obtain y .  ~ Ao(~) with 

P .  

y .  = ~ tiel 
i=pn-l+l 

and 

=qn(tp ._ l+x, . . . , tp , )  for k = 1,2, . . . ,n .  

This is our block basic sequence. I f  we set ft, = ~ ,  for n = 1,2,. . .  then since a is 

a nuclear exponent sequence of  finite type, so is fl and hence it is also of  infinite 
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type (Proposition 1(iv) and (vii)). To check that the subspace generated by (y.) is 

isomorphic to A~o(fl) we take zr to be the identity permutation and we have 

~k %~ ~q~ = - for k = 1 , . . . ,n  and n = 1,2,.-. 
fl~Cn) ~ .  

so it follows from the above inequalities that 

k,< f ( k )  < ~, = M f ( k )  for n _> k, n = 1, 2,--- 

The desired result then follows from the properties o f f  and Theorem 1 (iv) so 

our theorem is proved. 

REMARK 4. Obviously the conditions of  Theorem 4 are satisfied whenever ct 

satisfies the condition, 

sup ~ n + l  < O0. 
n 0~n 

Since this condition is strictly weaker than the condition of Theorem 3, we have a 

proper generalization of that result. 

REMARK 5. It is known that a complemented subspace of  a power series space 

of  finite type cannot be isomorphic to a power series space of  infinite type [1, 

Corollary 2.9]. Thus Theorems 3 and 4 give examples of  block basic sequences 

which generate subspaces that are not even isomorphic to complemented subspaces. 

Recently Lindenstrauss and Tzafriri [8] showed that the spaces Ip, 1 < p  < oo and 

c o can be characterized as those infinite dimensional Banach spaces with un- 

conditional bases with the property that every block basic sequence generates a 

complemented subspace. 

Since all bases in nuclear Fr6chet spaces are unconditional, it follows that i f  a 

basic sequence is a subsequence of  a basis then it generates a complemented sub- 

space. Hence, in view of  the preceding comment it follows that Theorems 3 and 4 

also provide examples of  block basic sequences which cannot be extended to bases. 

It was recently shown I-5] that the space co (of all sequences of  scalars) can be 

characterized as that nuclear Fr6chet space with the property that every block 

basic sequence of every basis has a block extension to a basis. 

We turn now to some negative results on the possibility of  embedding a power 

series space of  one type into one of another type. The first result in this direction 

was due to Zaharyuta [13] who showed that if 0r, fl were nuclear exponent sequences 

of  infinite and finite type respectively, then Ao(fl) is not isomorphic to a subspace 
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of  A~o(~). As we have szen in Theorems 3 and 4, this result does not remain true 

if the types are reversed, so we are led to ask for conditions on ~ (if any) which 

permit us to assert that A0(~) contains no subspace isomorphic to a power series 

space of infinite type. If  we look at Zaharyuta's argument we see that he obtains 

his result by proving that every linear continucus map from a finite type power 

series space to an infinite type power series space is compact. The conclusion 

about subspaces is then immediate. If we consider this statement in our context 

(that is, with "infinite" and "finite" interchanged), then x~e shall see that exactly 

the opposite result holds (Theorem 5). First we must prove a Lemma. 

LEMMA 4. Let ct be a nuclear exponent sequence of finite type and (rl~), a 

sequence of positive numbers. Then there exists a decomposition N = UrN v of 

the positive integers into countably many pairwise disjoint subsequences such 

that if we define 

ft, = ~z, ,  n e l l ,  v =  1 , 2 , . . .  

then the sequence obtained by rearranging (ft,) into a nondecreasing sequence 

is a nuclear exponent sequence of infinite type. 

PROOF. By Proposition 1 (ii) we can choose ~d,, v = 2,3, . . .  such that 

~1 t = N ,'- [-J~2 N~ is infinite and 

1 1 
]~ - -  < , - ~ - ,  v = 2 , 3 , . . . .  

heN,. Ct n "= 2 qv 

Then 

nCNa fin v = 2  heN,, O~n v=2 neNv O~n 

< 2 v 2 < ~ "  
V=2 

This implies that the set (fl.).~N, has at most finitely many elements less than any 

given number so it can be rearranged into a nondecreasing sequence which 

satisfies the condition of Proposition 1 (iii) so that it is a nuclear exponent sequence 

of  infinite type. Since ft. = e./~/1 for n e N 1 it follows from Proposition 1 (vi) that 

this is also a nuclear exponent sequence of infinite type. The Lemma then follows 

from Proposition 1 (v). 

TH~ORVM 5. For every nuclear power series space X of finite type there 
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exists a nuclear power series space Y of  infinite type and a linear, continuous, 

noncompact map T: Y ~  X .  

PROOF. We take X = Ao(c 0 and define t h = 1 and 

log v 
t/~ = for v = 2, 3,. . . .  ( ' )  log 

Then we obtain N~, v = 1,2, . . .  and fl from Lerr.n=a 4 so that Y = A~(p) is a nuclear 

power series space of  infinite type. 

Let ~ = (in) be the sequence given by 

~,, = v ~" for n~Nv ,  v = 1,2, . . . ,  

and let T be the diagonal transformation determined by 4. That is, T y  = (~,Yn)n 

where y is any sequence. Using the closed graph theorem it follows that we nee:l 

only show that T(Y)  c X and T is not compact. In order to do this it will be 

necessary to estimate the quantity 

, n ,  k = 1 , 2 , . . . .  

We fix k and consider three cases. 

I f  v = k we have, for n e N,, 

I f  v < k we have, for n e N,, 

/ k '~'/~" / v \ ~ ' (  k v +  1) ~' 

I f  v > k then, in particular v > 1 and we have, for n e N , ,  

z ~ \,~-/B- i v -  1'~,1.. /,v2 1~. 

_ i 'v 
- v \ ~ 1  = 1. 

Hence we have, for each k, 
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l im~]/a'[  k ~",~" ( ( t ) < o0, \ ~ ]  =< max k, 1, max v v + 1 "~ 
n v < k  \ l '  ] 

so we may conclude, 

(4) for each k, sup ~ l j .  [ k ,~do. 

(5) sup lim r [ k ]~/B~ 

Now we are ready to prove that T has the desired properties. 

T(Y) ~ X. 
such that 

Let t = (tn) ~ Y. Then for each k we have, from (4), an integer j 

and so we have, for all n, 

r 

/ k \a./#. 
;1/B.I '~ | < j  for all n 

t_c  "o 

k + 11 = ]t~]j~"J-~"~" ~k + 1] 

<= [ t.lj 

The fact that t e Y implies that (t.ja"). E 11 for each j and so 

and since this holds for each k it follows that T(Y) c X. 

T is not compact. Since Y is a nuclear Fr6chet space, it it also a Montel 

space and hence it suffices to show that T maps every member of  a fundamental 

system of neighborhoods of 0 for Y into a subset of  X which is not bounded. We 

consider the fundamental system (Vj)j where 

Vj= {t~Y: Z. [ t ~ l f l " < l } ,  j = l , 2 , - . - .  

Suppose that for some j,  T(Vj) is a bounded subset of X. This means that for each 

k there exists M k such that 

Z I t . l ~ - < l i m p l i e s  2;  .lt.I ~ ~ M~ for all k, 
n n 

or  
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( t . f " ) ,  e I1 lmphes ~.t, ~ - ~  , e 11 for all k, 

so that the sequence 

defines a diagonal transformation of Ix into itself and so it must be bounded, say 

by Nk, for each k. Thus we have, for each k, 

, \-~-~-f] < N~/a"j for all n. 

Taking the limit superior as n goes to infinity and using the fact (Proposition l(ii)) 

that lira, a, = oo we obtain 

lim el/a,, { k ]"/P" 
.  FUf] --- j '  

and this is true for each k independently o f j .  Obviously this contradicts (5) so 

the map T is not compact and the theorem is proved. 

Thus the method of Zaharyuta is totally unavailable for showing the non- 

existence of subspaces of  Ao(a ) which are isomorphic to some Ao~(fl). Indeed, 

results like Theorem 3 and 4 along with Theorem 5 might suggest that the opposite 

is the case and that every Ao(a) contains such a subspace. For our last result we 

show that this is not the case. 

be a nuclear exponent sequence of finite type which THEOREM 6. Let 

satisfies the condition 

lim ~n+~ = ~ .  
n an 

Then Ao(~ ) has no subspace isomorphic to a power series space of infinite type. 

PROOF. Suppose that X is a subspace of  Ao(~ ) which is isomorphic to a nuclear 

power series space of infinite type. Then X has a basis (x,) which is then a basic 

sequence in Ao(a). I f  we apply a variation of a theorem of  C. Bessaga and A. 

Petczyfiski [2, Theorem 1], then we may conclude that there is a basic sequence 

(y,) in A0(~) which generates a subspace Y isomorphic to X and such that each y.  

is a finite linear combination of the elements of the coordinate basis (e,). The 

variation consists of two changes. First, the result of Bessaga and Petczyfiski is 

for bases, but no change in the argument is required to obtain it for basic sequences, 
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Secondly, they do not explicitly show that X is isomorphic to Y but this is implicit 

in the proof. 

Thus we have the situation described in the beginning of this paper and set up 

for an application of Theorem 1. We can write Y = A~o(fl) and we shall obtain a 

contradiction for two separate cases. Let ko be the integer given in Proposition 2. 

First consider the case in which there exists k > k o and an infinite subset 

No = N such that qk+l > qk for all n~ No. Then using the hypothesis on ct and 

the second conclusion in Proposition 2 we have 

lim ?k+l lim - -  > lim - ~ .  
n~lVo ~ n~No ~ k n~.No ~ k qn qn 

But this fact along with the first conclusion in Proposition 2 implies that 
�9 k + l  hm.~No?. = ~ and this contradicts Theorem 1 (iv) (a). 

In view of  Lemma 1, the only other possibility is that for each k >/c  o there 

exists an integer n k such that q ~ =  qk.+lfor all n >__ n k and this implies that 

?k = ?k+t for all n > n k. Therefore lima?. ~ = limn7 k~ for all k >_- ko so we have, 

using Theorem 1 (iv) (a), 

sup lim E = m a x  sup lim Z ,sup lira E 
k . / = 1  7 -  \k<*o n i=1 -~-k~_ko - - ~  j = l  J : ]  

( =~1 iim.y~ k lim-.?i 
< m a x  sup - -  sup ]~ 

\k<ko /= j2 ' k>=ko j= l  j2 ] 

k lim, ?~ 
= sup X - -  

k~_ko j = l  j2 .< 

which contradicts Theorem 1 (iv) (b), so our theorem is proved. 

REMARK 6. It is easy to see that the hypotheses of  Theorems 4 and 6 do 

not include all possibilities. For example, the sequence 

(Xl~O~l:.{X2~Of2,0~3,0~3,... 

where a, = 2 2n is a nuclear exponent sequence of finite type which fails to satisfy 

either condition. Thus we are led to the following question. 

PROBLEM. Characterize those nuclear exponent sequences of finite type cr for 

which Ao(a ) contains a subspace isomorphic to a power series space of  infinite type. 
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